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The relationship of the axisymmetric flow between large but finite coaxial rotating 
disks to the von Karmhn similarity solution is studied. By means of a combined 
asymptotic-numerical analysis, the flow between finite disks of arbitrarily large 
aspect ratio, where the aspect ratio is defined as the ratio of the disk radii t o  the 
gap width separating the disks, is examined for two different end conditions: a 
‘ closed ’ end (shrouded disks) and an ‘ open ’ end (unshrouded or free disks). Complete 
velocity and pressure fields in the flow domain between the finite rotating disks, 
subject to  both end conditions, are determined for Reynolds number (based on gap 
width) up to 500 and disk rotation ratios between 0 and - 1 .  It is shown that the 
finite-disk and similarity solutions generally coincide over increasingly smaller 
portions of the flow domain with increasing Reynolds number for both end conditions. 
In  some parameter ranges, the finite-disk solution may not be of similarity form even 
near the axis of rotation. It is also seen that the type of end condition may determine 
which of the multiple similarity solutions the finite-disk flow resembles, and that 
temporally unstable similarity solutions may qualitatively describe steady finite-disk 
flows over a portion of the flow domain. The asymptotic-numerical method employed 
has potential application to  related rotating-disk problems as well as to  a broad class 
of problems involving flow in regions of large aspect ratio. 

1. Introduction 
Flows driven by rotating disks have constituted a major field of study in fluid 

mechanics for the better part of this century. These flows have technical applications 
in many areas, such as rotating machinery, lubrication, viscometry, computer storage 
devices and crystal growth processes. They are of special theoretical interest, 
however, because they represent one of the few examples for which there is an exact 
solution to  the Navier-Stokes equations. 

This was first recognized by von KBrman (1921) who considered the problem of 
a disk of infinite extent rotating in an unbounded, quiescent fluid. By assuming a 
self-similar, axisymmetric velocity profile, he was able to  reduce the full equations 
of motion to a pair of nonlinear ordinary differential equations. Cochran (1934) 
obtained the first accurate numerical solution to von Karman’s equations ; his 
well-known solution shows the action of the disk as a centrifugal fan, throwing fluid 
out radially and drawing it in axially. Bodewadt (1940) extended von Karman’s 
analysis to  treat the problem of flow above a stationary disk with the outer flow in 
solid-body rotation. Batchelor (1951) generalized the analyses of von Karman and 
Bodewadt to include one- and two-parameter families of solutions having a mathe- 
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matical structure very similar to that of von Khrman’s. The one-parameter family 
corresponds to the flow above a single infinite disk rotating a t  angular velocity 8, 
with the fluid at infinity in solid-body rotation of angular velocity SZl. The ratio of 
these angular velocities, s = O,/SZ,, is the single parameter. The two-parameter 
family of solutions describes the flow between two infinite, coaxial rotating disks; in 
addition to the ratio of the angular velocities of the disks s an additional parameter, 
the Reynolds number, Re = SZ, H2/v based on the gap width between the disks H ,  
appears. 

Batchelor did not attempt to  solve the similarity equations he derived but rather 
discussed qualitatively their expected features. For the flow between two infinite 
disks, he argued that, at high Reynolds number for s 2 0, the fluid between the disks 
would rotate with a constant angular velocity and that boundary layers would form 
a t  both disks. Stewartson (1953) obtained solutions to  the similarity equations for 
flow between two rotating disks as a power series in the Reynolds number. Based 
on the trends observed as the Reynolds number was increased, he concluded that, 
for one disk rotating and the other stationary (s = 0 ) ,  a boundary layer would form 
only a t  the rotating disk and the core would not rotate. The limiting solution, 
therefore, would be the von Karman free-disk solution. Stewartson also predicted 
that the fluid in the core would not rotate when the disks rotate in the opposite sense. 

Following the papers of Batchelor and Stewartson and continuing through to the 
present, there has been a large body of published literature concerning the flow 
between rotating disks. It is not our intent here to  review this; we shall only briefly 
discuss a few of the papers that  are most applicable to  our study. A more extensive 
discussion can be found in Durlofsky (1986). Some of the earlier work (pre-1968) is 
discussed by Grccnspan (1980); more recent analytical and numerical work is 
reviewed by Parter (1982). The recent review of Zandbergen & Dijkstra (1987) 
provides an extensive survey of theoretical and numerical papers concerning rotating- 
disk flows. 

Early numerical solutions by Lance & Rogers (1962) and Pearson (1965) seemed 
to indicate that the Batchelor form was the proper limiting solutioh for the flow 
between a rotating disk and a stationary disk. This question was clarified, however, 
when Mellor, Chapple & Stokes (1968) demonstrated that both the Batchelor and 
Stewartson solutions, as well as many others, exist a t  high Reynolds number for 
s = 0. The Batchelor solution evolves from the zero-Reynolds-number solution; the 
Stewartson solution does not appear until Re x 217. 

Since the work of Mellor et al., many investigators, most notably Nguyen, Ribault 
& Florent (1975), Roberts & Shipman (1976), Holodniok, Kubicek & Hlavacek (1977, 
1981) and Szeto (1978), have studied von Karman’s similarity equations for flow 
between infinite rotating disks and have shown their structure to  be extremely 
complex. Szeto reported the most extensive calculations on the similarity equations 
describing flow between two infinite coaxial rotating disks, spanning s from - 1 to 
+ I  and Re from 0 to 1000. Several interesting features of the solution structure 
became apparent. Specifically, Szeto demonstrated the existence of a uniform region 
of uniqueness: for Re < 55 and all values of s the solution is unique; for Re > 55 the 
solution is non-unique for all s. He also showed that, for any value of s, a single 
continuous solution extending from zero to infinity in Re exists. Due to limit points 
in s, however, none of these continuous solution branches exists for all s ;  i.e. no 
continous sheet of solutions spanning all Re and all s exists. 

Szeto found as many as 19 solutions to the similarity equations in some parameter 
ranges, many of which correspond to  rather unusual (perhaps aphysical) velocity 
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profiles. Despite this myriad of solutions and critical points, only one bifurcation was 
observed: for exact counter-rotation (s = - 1 )  at Re = 119.8, symmetric, two-cell 
solutions bifurcate supercritically to asymmetric, two-cell solutions. Szeto also 
analysed the temporal stability of many of the solution branches; among his findings 
are that the s = 0 Batchelor solution is stable, the s = 0 Stewartson solution is 
unstable, and the symmetric solution at  s = - 1 loses stability to the bifurcating, 
asymmetric solutions at  Re = 119.8. 

The solution multiplicity of the rotating-disk similarity equations, as well as the 
aphysical velocity fields that many of the solution branches display, call into question 
the ability of the similarity solution to describe the real flow it is intended to 
represent-the flow between finite rotating disks. It is not apparent from the 
similarity analysis which, if any, of the similarity solutions in a given parameter range 
might describe such a flow. 

The purpose of this work is to investigate the validity of the similarity solution 
in describing the flow between two finite rotating disks. Toward this end, we use a 
combined asymptotic-numerical analysis that allows us to examine the flow between 
finite disks of arbitrarily large aspect ratio. The aspect ratio is defined as the ratio 
of the disk radii L to the gap width separating them H .  The results of this analysis, 
considered in the light of the temporal stability of the similarity solution, enable us 
to elucidate the relationship between the similarity solution and the real flow it is 
intended to represent. 

The similarity analysis applies to disks that are infinite in extent and therefore no 
‘end condition’ can be imposed. For the proper analysis of flow between disks of finite 
extent, however, an end condition is required. Indeed, it is the end that distinguishes 
between finite and infinite disks. As we shall show in $2, by means of an asymptotic 
analysis we can analyse the effects of the end in a general way for arbitrarily large 
aspect ratios. Upon appropriately non-dimensionalizing the equations of motion and 
taking the limit as the aspect ratio becomes large, it will be seen that the aspect ratio 
drops out of all equations and boundary conditions. Thus, through this approach we 
avoid the problem of considering any specific aspect ratio and can then determine 
which, if any, of the similarity solutions gives a valid description of the flow between 
rotating disks of finite extent and over what portion of the flow domain this 
agreement exists. Let us define precisely what we mean by the similarity solution 
giving a ‘valid ’ description of the flow between finite rotating disks. For the similarity 
solution to be considered valid at a given radial position, it must quantitatively agree 
with the finite-disk solution at  all axial locations corresponding to this radial position. 

In this study, two types of end conditions are considered: a ‘closed’ end, which 
corresponds to disks enclosed by a cylinder (shrouded disks), and an ‘open’ end, 
which corresponds to the disks surrounded by an unbounded fluid (unshrouded or 
free disks). Our approach is analogous to those of Brady & Acrivos (1982) and Brady 
(1984) in their studies of the flow in a long but finite channel or tube whose surface 
either moves with a velocity linear in the streamwise coordinate or is uniformly 
porous. 

In the past, many studies (e.g. Pao 1970, 1972; Lugt & Haussling, 1973; Adams 
& Szeri 1982; Szeri et al. 1983a,b; Dijkstra & van Heijst 1983; Harriott & Brown 
1984) have addressed the general problem of axisymmetric flow between finite 
rotating disks enclosed by a cylinder but, with the exception of that of Dijkstra & 
van Heijst, none has considered both large aspect ratios ( L / H  > - lo), where the 
similarity solution might be expected to be applicable, and high Reynolds number 
(Re 2 ZOO), probably because the numerical resolution of the flow near the outer edge 
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poses a difficult numerical problem under these conditions. The work of Harriott & 
Brown, where the flow in a differentially rotated, non-deformable cylindrical drop 
with aspect ratio ranging from less than one to  three is considered, is significant in 
that solution multiplicity is observed. In  the case of exact counter-rotation (s = - l ) ,  
for example, Harriott & Brown obscrved both symmetric and asymmetric solutions 
connected by a supercritical bifurcation. 

To recover the similarity solution over any part of the flow domain, it is apparent 
that  the end must be further removed, i.e. a larger aspect ratio is required. Dijkstra 
& van Heijst (1983) performed extensive numerical calculations a t  an aspect ratio 
of 14 for Reynolds number up to 1000. Because the numerical resolution of the details 
of the flow near the outer edge for such a large aspect ratio posed a difficult numerical 
problem, Dijkstra & van Heijst were forced to skew their finite-difference mesh 
toward the disk edge for their numerical scheme to work well. As a result, their mesh 
was extremely sparse near the axis of rotation, making comparison with a similarity 
solution difficult. They considered s = 0 and several values of negative s ;  in some 
cases agreement with the similarity solution was established. The objective of the 
work of Dijkstra & van Heijst was apparently not to make a systematic, quantitative 
comparison between their results and the similarity solution. Even with better mesh 
resolution near the axis of rotation, an approach such as theirs might still not strictly 
determine the validity of the similarity solutions. Though considerably larger than 
one, an aspect ratio of 14 used by Dijkstra & van Heijst is not necessarily large 
enough. If, in some parameter ranges, their results differ from the similarity solution 
over the entire flow domain, the question of whether a larger aspect ratio might 
reconcile this difference arises, and this uncertainty may persist for all finite aspect 
ratios. Our approach avoids this problem in that we consider the flow between 
rotating disks of arbitrarily large, but finite, aspect ratio. This point will become clear 
in the asymptotic analysis in $ 2 .  

Many experimental studies of the flow between rotating disks have been performed. 
We shall comment only on the results that are applicable to our study. Experiments 
on the flow between a rotating and a stationary disk (s = 0) were conducted by 
Schultz-Grunow (193Q Stewartson (1953), Picha & Eckcrt (1958), Mellor et al. 
(1968), Uien & Pcnner (1970), Szeri et al. (19836) and Dijkstra & van Heijst (1983). 
From these studies, it is apparent that, a t  high Reynolds number, the disk housing 
(shrouded or unshrouded disks) fundamentally affects the flow field over the entire 
domain. If the disks are unshrouded, experiments indicate that, a t  high Reynolds 
number, the fluid core displays no observable angular motion and little radial motion. 
If the disks are shrouded, however, there is a definite angular motion in the core as 
well as a radial motion. 

Picha & Eckert and Dijkstra & van Heijst conducted experiments with both disks 
rotating. At an aspect ratio of nine. for both shrouded and unshrouded disks a t  high 
Re, Picha & Eckert observcd no rotation in the fluid core when the disks were 
countcr-rotated. Dijkstra & van Heijst pcrformed extensive experiments with 
shrouded disks a t  an aspect ratio of 14. They varied Re from 50 to  1000 and s from 
0 to -0.825. Their high-Re results a t  s = -0.6 and s = -0.45 show no angular 
velocity in the core; a t  s = -0.15, however, they did observe a definite core angular 
velocity. Dijkstra & van Heijst were also ablc to locate the stagnation point, where 
the dividing streamline meets the slower moving disk, for s < 0 as a function of 
Reynolds number over a large range of s and Re. 

In  $ 2  we formulate the cquations and boundary conditions for the similarity 
solution and the asymptotic-numerical analysis for flow between large but finite 
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disks. From the asymptotic analysis, it is clear that the disks, though finite, can be 
arbitrarily large because, once small terms in the equations of motion are neglected, 
the disk radii do not appear in the equations of motion, the boundary conditions or 
the Reynolds number. Because our asymptotic analysis avoids the need to resolve 
the details of the flow field near the outcr cdge, our numerical routine is fast and 
accurate and the entire flow domain is well resolved. The asymptotic-numerical 
method can potentially be applied to many related rotating-disk problems, as well 
as to other large-aspect-ratio problems where the effect of an end or a turning region 
needs to be accounted for in a general way but the details of the flow in this region 
are not essential or desired. 

Although our analysis is valid for - 1 < s < 1 ,  we shall present results, in $3, only 
for - 1 < s < 0. For all values of s considered, the effect of the end on the flow between 
finite rotating disks is seen to increase with incrcasing Reynolds number; i.e. the flow 
deviates from similarity form over a greater portion of the flow domain as Re is 
increased. This is in itself a significant result. One might expect that given a finite-disk 
arrangement, the effect of the end (in a dimensionless sense) could be reduced and 
eventually confined to a region in the immediate vicinity of the end by either getting 
larger disks or reducing the spacing between them. Our asymptotic analysis and 
numerical results show, however, that for arbitrarily large disks the effect of the end 
is not, in general, confined to a region near the end. 

For exact counter-rotation, s = - 1, the symmetric, Stewartson similarity solution 
is seen to  give a valid description of the finite-disk flow over some portion of the 
domain for Re < 500 (the largest Re considered) for the open-end flows and for 
Re < 350 for the closed-end flows. This similarity solutions is, however, temporally 
unstablc for Re > 119.8, so we have the rather surprising result that  the flow between 
finite rotating disks can be described by an unstable similarity solution. This apparent 
discrepancy is resolved by considering the temporal stability of the similarity 
solution, which indicates that only disturbances that are asymmetric about the 
midline between the disks will excite the unstable mode. The introduction of such 
disturbances to the s = - 1 flows results in a change in the flow structure which 
invalidates the similarity solution as a local description of the flow near the axis of 
rotation. 

For the case of one disk rotating and thc other stationary, s = 0, the end condition 
is seen to determine which similarity solution the flow resembles a t  high Re. Though 
strict quantitative agreement with the similarity solution a t  high Re is not achieved 
in either case, the closed-end flows resemble the Batchelor solution while the open-end 
flows resemble the Stewartson solution. For Re < 80, both the open- and closed-end 
flows agree with the Batchelor solution near the axis of rotation. As the Reynolds 
number is increased, the open end-flows tend away from the Batchelor solution and 
toward the Stewartson solution, while the closed-end flows continue to resemble the 
Batchelor solution up to Re = 1000, the largest Re considered. 

Next we consider strong counter-rotation, s = - 0.8. These results qualitatively 
resemble the s = - 1 results, though several new features appear. For Re < 120 both 
the open- and closed-end flows are described by the similarity solution near the axis 
of rotation. For Re > 120, the closed-end flows do not agree with any similarity 
solution anywhere in the flow domain. The open-end flows for Re > 200 are, however, 
described by two different similarity solutions in two different regions of the flow 
domain. 

Finally, we compare some of our numerical work with experimental data from the 
literature. The good agreement obtained indicates that  our analysis, though strictly 
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FIGURE 1.  Schematic diagram for the flow between two coaxial rotating disks. For the 
similarity solution, LIH --f 00. 

valid only for very large aspect ratios, accurately describes realizable flows at more 
moderate aspect ratios, even near the outer edge. In addition, our numerical results 
are consistently in agreement with qualitative experimental observations, and 
explain observed differences in the flow structure as the ratio of angular velocities 
s is varied. 

2. Problem formulation 
2.1. Similarity solution 

As shown in figure 1 we denote the spacing between the disks by H ,  the angular 
velocity of the bottom disk by a, the angular velocity of the top disk by 952, the fluid 
viscosity by ,u and its density by p.  For disks of infinite radius (L /H+m),  the 
Navier-Stokes equations admit an exact solution of the similarity form 

u = -+rf’(z), v = rg(z), w =f(z), ( 1  a,b,c) 

P = POk) + i(P/Re) r2, (1 

where u, v and w are the radial, azimuthal and axial components of the velocity field, 
/3 is a constant and Re = pQ€P/,u is the Reynolds number. The similarity functions 
f and g satisfy the ordinary differential equations 

f”’+P = Re [ -$( f ‘)2++fs”+2g2], 

9’’ = Re [ f g ’  - gf ’I, 
subject to no-slip boundary conditions at both disks 

f (0 )  = f ’(0) = 0, g(0) = 1, (3a)  

f(1) =f’(l) = 0,  g ( 1 )  = 8. ( 3 b )  

The sixth boundary condition serves to determine the unknown pressure coefficient 
p. Szeto (1978) showed that only Is1 < 1 and Re 2 0 need be considered; taking Is1 > 1 
simply corresponds to interchanging the disks and rescaling Re. 

Many different numerical schemes have been used to solve the two-point boundary- 
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value problem posed by ( 2 )  and (3). We first differentiated (2a )  with respect to z to 
eliminate B and then solved the resulting sixth-order system using the finite-element 
method with cubic Hermite basis functions and Newton iterations. An arc-length 
continuation procedure was used to trace solution branches around limit points. 

2.2. Flow between rotating disks of finite extent: asymptotic analysis 
We now consider the problem for the flow between rotating disks of large but finite 
radii L with L / H  % 1 .  The natural scalings are : r - O ( L )  ; z - O ( H )  ; u and v - O(G?L) ; 
w,  from continuity, - O(l2H) and p ,  scaled with the inertial terms, - O(pSZZL2). For 
axisymmetric flow, in the limit of large aspect ratio, L I H  9 1, the dimensionless 
equations of motion and continuity become 

where Re is again pQHz/p. The boundary conditions in z are as before (cf. (3)) 

u(r, 0) = w(r, 0) = 0, v(r, 0) = r ,  

u(r, 1)  = w(r, 1 )  = 0, v(r, 1)  = rs. 

(5a)  

( 5 b )  

The boundary conditions in r remain to be specified. 
Equation ( 4 )  is similar to the equations derived by Brady & Acrivos (1982) for flow 

in a finite channel or tube with an accelerating surface velocity and in Brady (1984) 
for the flow in a finite channel or tube with a porous wall. For these types of problems, 
the governing equations are seen to be similar to the boundary -layer equations, 
except that the transverse (in this case axial) coordinate is 0(1) and the Reynolds 
number appears as a parameter. Furthermore, the large lengthscale L does not appear 
in the equations (once terms of O [ ( H / L ) 2 ]  have been neglected), in the Reynolds 
number, in the boundary condition in z or, as we shall see, in the boundary conditions 
in r .  Therefore, as long as L / H  B 1, the absolute scale of L is immaterial; the analysis 
is valid for disks of arbitrarily large radii. Note that ( 4 )  and (5) admit a solution of 
the similarity form (1). 

To complete the specification of the problem, we need to formulate conditions at 
the ends of the disks ( r  = 1 in dimensionless variables) and, as we shall see, possibly 
near the axis of rotation ( r  = 0). We could simply specify an arbitrary, mass- 
conserving velocity field at r = 1 but this would not, in general, correspond to a 
physically realistic end condition. The end conditions we wish to consider are those 
of a closed end, where the disks are enclosed by a cylinder, and an open end, where 
the disks are surrounded by an infinite, unbounded fluid. 

2.2.1. Closed end 

To formulate a condition for the closed end, we follow the approach of Brady 
(1984) and Brady & Acrivos (1982). As discussed in these papers, ( 4 )  (or its analogue) 
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is not necessarily valid within an O(H/L) region near r = 1 because, near the end, the 
r-variation in the flow occurs on the scale of H rather than L. Equation (4), therefore, 
should be viewed as applying to the flow in the 0(1) ‘outer’ region whose solution 
must match with the solution to  an equation valid in the O(H/L) ‘inner’ region, near 
the ends of the disks. The determination of the complete flow field in this inner region 
would pose a difficult numerical problem but, as we shall show, this is not necessary 
because it serves only to  provide a boundary condition for (4). Thus, the conditions 
a t  r = 1 that we shall impose on (4) are not true boundary conditions for the full 
equations of motion, but rather matching conditions between the inner and outer 
regions. 

To analyse the region near the end r = L (in dimensional variables), we define a 
new non-dimensional variable, u = ( L - r ) / H ,  measuring the distance from the end 
on the scale of H .  I n  order to match with the flow in the outer region ( r  - O(L)) ,  the 
velocities u and w is this inner region remain O(OL), and, from continuity, w becomes 
large, O(OL) also. Thus, in this inner region, with u - O ( l ) ,  the flow is inviscid, with 
an effective Reynolds number of Re(L/H), and locally two-dimensional, i.e. curvature 
effects are negligible. Hence, apart from the angular swirling motion, we have a 
two-dimensional inviscid ‘turning ’ region a t  T = 1, where the fluid thrown outward 
by the spinning disk(s) collides with the closed end, turns around and flows back 
towards r = 0. The only situation in which the flow in this O(H/L) region would not 
be inviscid is if the disks were in near solid-body rotation (s z 1). Because we are 
interested only in - 1 < s < 0, we shall not concern ourselves with this case. There 
are of course boundary layers adjacent to the disks and on the outer cylindrical wall 
in this inviscid turning region, but these will scale as {Re(L/H)}-t and therefore will 
not contribute to the matching condition with the outer region to leading order in 
L / H  % 1. 

In  a two-dimensional inviscid flow, vorticity is conserved along streamlines, i.e. 

where Y is the two-dimensional stream function (u = aY/az, w = -aY/acr) and the 
vorticity w is a function of Y only. Because (6) only serves to provide a matching 
condition between the inviscid end region and the main flow governed by (4), we are 
only interested in its behaviour as the outer region is approached, i.e. as u+ co. The 
mismatch in the axial velocity w between the two regions requires that it vanish as 
u+w.  Thus, (6) becomes on matching 

which, if we consider a point zo a t  which u = 0, implies that  u(u+ a, z )  must be 
antisymmetric about zo. 

For the moment, let us assume that, near the disk edge, only the bottom disk 
throws fluid out in the positive radial direction. This will of course be the case when 
s = 0 and is also the case for slightly negative s a t  sufficiently low Reynolds number. 
Equation (7) implies that  upon matching the radial velocity is antisymmetric about 
a point zo, and, in order to conserve mass, we must additionally require that z,, < f. 

Because zo cannot be determined precisely at leading order, the matching condition 
between the inviscid region and the O(1) region is not determined uniquely. Though 
any zo < + is an acceptable choice, zo = t seems to be the most reasonable. Choosing 
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zo < + implies that  the returning fluid will be displaced from the top disk and a region 
of stagnant fluid will exist near the top disk. Although seemingly aphysical, a flow 
of this nature is dynamically possible. In  this regard, however, i t  should be noted 
that Dijkstra & van Heijst (1983),  who fully resolve the r = 1 end region, in no cases 
report such behaviour. Thus, we choose zo = t ,  allowing the end condition for u to  
be simply stated as 

u ( z )  = - ~ ( 1 - z ) ,  0 < z <i, a t  r =  1. (8) 

I n  an inviscid axisymmetric flow with swirl, the azimuthal velocity is given by 
(Batchelor 1967) 

which, a t  the disk end r = 1, reduced to  v = C(!P). This simply states that  angular 
velocity is conserved along streamlines. Along with (7),  this implies that  v(a+ 00, z )  
is symmetric about the point zo. So, for zo = f, the end condition for v is 

21 = TC(!P), (9) 

w ( z )  = w(1-z), 0 < z <!j, at r = 1. (10) 

For the boundary-layer-like equations (4) no condition in r is needed for the axial 
velocity. 

The end condition derived from the inviscid analysis is consistent with intuition. 
Physically, we expect the fluid thrown out by the bottom disk to  traverse up the 
sidewall, while maintaining its angular velocity, and re-emerge at the top disk. This 
is precisely what the closed-end turning-region analysis specifies. Note that, because 
the flow near the enclosed end is inviscid, it make no difference, to a first 
approximation, whether the enclosure itself rotates or not. This result is in agreement 
with the experimental observations of Dijkstra & van Heijst (cf. $3.4). 

When both disks throw fluid out in the positive radial direction near the disk end, 
as is the case for s near - 1 or for slightly negative s at sufficiently high Reynolds 
number, the analysis is more involved. I n  this case, there are two zo values, one 
associated with the flow from the top disk and one with the flow from the bottom 
disk. Neither is determined uniquely from the inviscid analysis. Physically, the fluid 
thrown out by the bottom disk traverses up the sidewall and the fluid from the top 
disk traverses down. Both streams maintain their angular velocity. When these two 
streams collide, they turn and flow radially inward. The precise location of this 
collision point, which would determine both zo values, is uncertain. I n  the results we 
shall present, we have assumed that the location of this collision is determined by 
the ratio of the widths of the two colliding jets, which is roughly proportional to the 
ratio of the mass flow rates. This assumption allows us to determine the zo values 
and to apply boundary conditions at r = 1. The non-uniqueness of the colliding 
inviscid streams allows other possibilities. While other choices affect the flow locally 
near the edge - within two or three grid points - they do not influence the bulk of 
the flow in the 0 ( 1 )  region between the disks. The most important elements in the 
end condition are conservation of vorticity and angular velocity along stream-lines. 
The details of how this is accomplished are relatively unimportant. 

2.2.2. Open end 

For an open end, the analysis at r = 1 is considerably different because the 
streamlines originate outside the disks. The fluid thrown outward past r = 1 by the 
spinning disk(s) must be replaced by the surrounding fluid in order t o  conserve mass. 
Thus, the surrounding fluid is simply drawn into the flow domain by a radial pressure 
gradient. Because ap/az = 0 everywhere in the flow domain, the incoming fluid is of 
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uniform radial velocity and, because the surrounding fluid is quiescent, the angular 
velocity of the incoming fluid is zero. The case where the surrounding fluid rotates 
with a specified angular velocity can also be examined. Thus, for an open end the 
matching conditions for (4) are simply that fluid moving in the positive radial 
direction exits and a uniform, mass-conserving radial flow with zero angular velocity 
returns. Again, the precise details of how the fluid is returned are relatively 
unimportant. 

As discussed by Brady (1984) and Brady & Acrivos (1982), an inviscid ‘collision’ 
region may arise at r = 0 at sufficiently large Reynolds number. Such an inviscid 
region occurs when the radial velocity of the returning fluid does not decay to zero 
rapidly enough as r+O. As was the case for the inviscid end region near r = 1, we 
are again not concerned with the details of the motion within this region but only 
with the matching condition i t  provides for the boundary-layer-like equations (4). 
This matching condition is derivable from an inviscid analysis much like that 
described for the closed-end condition. Though the two analyses are similar, the 
structure of the r = 0 collision region is more complex because the scaling for the 
velocities is not known a priori and because the effect of curvature cannot be 
neglected. However, the resulting matching condition, which supplies us with a 
‘consistency’ condition (the flow in the 0(1) domain must be consistent with this 
analysis if a collision region forms), turns out to be of a form identical with the r = 1 
closed-end matching condition. We use the word consistency for the condition at 
T = 0 because the boundary-layer-like equations (4), being parabolic in T ,  only require 
one boundary condition in r ,  the end condition at  r = 1. However, to be consistent 
with the full, elliptic Navier-Stokes equations, the solution to (4) must also match 
with an appropriate solution as r+O. 

The problem formulation is now complete. We have specified the governing 
equations (4), axial boundary conditions (5), radial boundary conditions at r = 1 for 
the two types of ends, and a consistency condition at  r = 0. The numerical solution 
procedure is similar to that used by Brady (1984) and Brady & Acrivos (1982). The 
time-dependent terms are added to (4) and a finite-difference scheme, using space- 
centred differences in the axial direction and upwind differences in the radial 
direction, is used to solve the resulting transient problem. The integration in time 
is implicit in the axial direction but explicit in the radial direction. A uniformly spaced 
mesh of 51 x 51 is typically used, though little difference in the solution is observed 
with 26 x 26 or 101 x 101 meshes. The unknown pressure gradient is determined by 
imposing the constraint of no net radial flux. The equations are integrated in time 
until a steady solution is reached; at high Re this generally requires a dimensionless 
time of about 30 to 40, the time being made non-dimensional with Q-’. 

The conditions at  r = 1 and 0 evolve in time along with the rest of the solution. 
To determine the boundary conditions at  r = 1, the radial and azimuthal velocities 
are linearly extrapolated from the last two grid points to r = 1. Regions where the 
extrapolated radial velocity is positive are left unchanged. Regions where the 
extrapolated radial velocity is negative represent the returning fluid and are adjusted 
according to the collision region analysis. For the open-end condition, the negative 
velocity is adjusted to be uniform subject t o  the constraint of conservation of mass. 
The angular velocity of the incoming fluid is set to zero. For the closed-end condition, 
the returning flow is adjusted such that the radial velocity profile is antisymmetric 
about the point (or points) zo and the azimuthal velocity symmetric. Under some 
conditions, the extrapolated radial velocity is positive in only a small region near the 
bottom disk (say from z = 0 to a, a < t ) .  Then, between z = a and 1 --a, the radial 
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velocity is set to zero. Because Y is constant in this region, the azimuthal velocity 
is also constant. This constant azimuthal velocity, which is in general non-zero, is 
simply v(r = 1, z = a) .  

The consistency condition at r = 0 is handled much like the r = 1 closed-end 
condition. The radial and azimuthal velocities are extrapolated back to r = 0 and, 
if the radial velocities do not vanish, the collision-region analysis is applied to 
determine a matching condition. A t  r = 0, however, the negative (incoming) radial 
velocities and their associated azimuthal velocities are left unchanged and the 
positive radial velocities adjusted to be antisymmetric about zo, in contrast to the 
procedure at r = 1. 

Because we do not need to resolve the details of the flow in the O ( H / L )  region at  
r = 1, our numerical procedure is fast and efficient. Also, we are able to finely resolve 
the region near the axis of rotation, and thereby investigate the validity of the 
similarity solution as r+O. 

3. Results 
In  this section, we shall present results at three different rotation ratios: s = - 1, 

0 and -0.8 as well as comparisons with experiment. Our results include velocity and 
pressure-gradient profiles. It is our aim to determine which, if any, of the similarity 
solutions describes the flow over a portion of the domain between finite rotating disks. 
Near the outer edge, the effect of the end will be important and the flow will not be 
of the similarity form. As the axis of rotation is approached, however, the effect of 
the end will generally decrease and the solution may approach similarity form. To 
concisely compare the finite-disk and similarity-solution results, we shall plot 
l/r(dp/dr) evaluated at  a single radial location for both solutions. This quantity, for 
either the finite disk or similarity solution, will be referred to as the pressure 
coefficient. Because we are interested in determining if the solutions agree anywhere 
in the flow domain and because we expect agreement, if it does exist, to occur near 
the axis of rotation, we choose to compare the pressure coefficients for the two 
solutions at r = 0.1. For both flows, l/r(dp/dr) does not vary axially and for the 
similarity solution it is a constant, equal to /3/2Re (cf. (1 d )). The pressure coefficient 
is representative of the finite-disk flow at a particular radial location and is therefore 
a useful variable for comparison. 

For the similarity solution to be considered a ‘valid ’ description of the flow between 
rotating disks at a given radial position, or for the two solutions to be considered 
to ‘agree’, we require that the pressure coefficients for the two solutions not vary 
by more than 2 yo at the specified radial location. This, we feel, is representative of 
the accuracy of our numerical solutions. Other flow properties were found to show 
comparable agreement, indicating that comparison of l/r(dp/dr) is a valid approach. 
In some cases, the flow between finite rotating disks may resemble qualitatively, but 
not agree quantitatively with, the similarity solution. In  these instances, we shall 
describe the finite-disk flow as ‘resembling’ the similarity solution and shall, in some 
cases, indicate the magnitude of the discrepancy. 

For additional velocity and pressure-profile plots and further comparisons with the 
similarity solution see Durlofsky (1986). 

3.1. Exact counter-rotation : 5 = - 1 
We first consider the case of exact counter-rotation, s = - 1. A plot of the pressure 
coefficient, /3/2Re, v5. Re is shown in figure 2 ;  the solid curves are the similarity 
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FIQURE 2. Comparison of the s = - 1 pressure coefficients at r = 0.1 for similarity and fnite-disk 
flows; -, similarity solution; 0, open-end flows; x , closed-end flows. The numbering of the 
similarity solution on this and all subsequent figures corresponds to the numbering scheme of Szeto 
(1978). Branch 4 is the symmetric Stewartson solution. Branches 2 and 3 appear together in this 
representation. 
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FIQURE 3. Pressure-gradient profiles for the s = - 1 open-end finite-disk flows at Re = 40, 100 and 
500. The dashed lines correspond to the pressure-gradient profiles of the Branch 4 similarity 
solution. 
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solutions. The one continuous solution (Branch 4 using Szeto’s notation), which 
extends from 0 to 00 in Re, is the symmetric solution; its radial velocities are 
symmetric about the midline z = 0.5, its angular velocities antisymmetric. At high 
Re (Re > 200) Branch 4 solutions are of the Stewartson type - both disks locally 
throw fluid out in the positive radial direction and, in the core, the returning radial 
velocity is O(Re-4) in magnitude, while the angular velocity approaches zero outside 
the O(Re-4) thin boundary layers located adjacent to each disk. At Re = 119.8, the 
solution bifurcates supercritically to two asymmetric solutions labelled Branches 2 
and 3. (Only one new solution appears on figure 2 because the two asymmetric 
solutions have identical p-values. Had we plotted another solution variable such as 
the azimuthal velocity at the midline, g(z  = t ) ,  the two solutions would be apparent.) 



Rotating disk $ow 375 

These asymmetric solutions are not of Stewartson type - at high Reynolds number 
they possess non-zero angular velocities in the core. Additional, non-Stewartson type 
solutions appear at Re = 55 and extend to Re+m but are not shown in figure 2 
because their velocity fields are highly aphysical with angular velocities in the core 
very much greater in magnitude than that of the disks. Branch 4 similarity solutions 
are temporally stable up to the Re = 119.8 bifurcation; at the bifurcation they lose 
stability to the Branch 2 and 3 solutions. 

We now turn to the flow between disks of finite radii, considering first the open 
end condition. Figure 3 is a plot of the pressure coefficient as a function of r a t  
Re = 40, 100 and 500. The solid curves are the finite-disk results, the dashed lines 
the Branch 4 (symmetric) similarity solution. The influence of the end is evident near 
T = 1 where the pressure gradient deviates from the similarity solution, and this 
deviation is seen to propagate inward with increasing Reynolds number. At low 
Reynolds number (Re = lo), the end effect is important only for 0.92 < T < 1 ; thus, 
throughout the bulk of the flow domain, 0 < r < 0.92, the similarity solution is valid. 
(As mentioned above, by valid we mean that the similarity solution and the finite- 
disk solution agree at all axial locations at  a given radial position with an error of 
at  most 2 %). By Re = 40, the end effect propagates further inward to r = 0.85, and 
for Re = 100, to r = 0.7. Thus, we see that, at  low to moderate values of the Reynolds 
number, the effect of the end increases noticeably with increasing Reynolds number. 
While appreciable over a large portion of the flow, the effect of the end at high 
Reynolds number changes slightly with increasing Reynolds number. At Re = 300, 
the similarity solution is valid only for 0 < r < 0.15, but the discrepancy between 
pressure coefficients for the two solutions is still only 10% at r = 0.5. A t  Re = 500, 
the Similarity solution is valid over a comparable region, with a 14% deviation a t  
r = 0.5. 

To concisely present the s = - 1 open-end results, in figure 2 we compare l/r(dp/dr) 
evaluated at a single point near the axis of rotation, r = 0.1, (diamonds) with the 
similarity solution. Near the axis of rotation the finite-disk open-end solutions agree 
with the symmetric similarity solution for all values of Re considered. Beyond 
Re = 119.8, then, we have an unusual result: the flow between finite rotating disks, 
over a region near the axis of rotation, is described by a temporally unstable similarity 
solution. Because our numerical solution procedure involves a time integration, we 
would expect to find only temporally stable steady solutions. It should be noted, 
however, that these finite-disk solutions were all calculated by incrementing the 
Reynolds number. Thus, the initial condition for each run was the symmetric s = - 1 
solution at the previous Reynolds number, so that each solution was subjected to 
only symmetric disturbances - all asymmetric disturbances were entirely suppressed 
by the iteration procedure for the end condition. We shall see that the introduction 
of an asymmetric disturbance will reconcile this apparent discrepancy. 

Aside from the fact that the symmetric s = - 1 similarity solution is temporally 
unstable at  high Re, i t  is not surprising that the flow between finite rotating disks 
with an open end should decay to a Stewartson-like flow near the axis of rotation. 
The open-end boundary condition resembles closely a high-Re Stewartson solution - 
it  has both disks dominating the flow locally, with a zero angular and uniform radial 
velocity core. The qualitative resemblance of the open-end condition to the symmetric 
similarity solutions is apparent in figure 4(a ,b ) ,  where the radial and azimuthal 
velocity profiles at  different values of r are plotted for Re = 200. Note the uniform 
radial velocity and zero azimuthal velocity of the incoming fluid at r = 1. These 
velocity profiles, like all s = - 1, open-end velocity profiles that have not been 
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FIGURE 4. Velocity profiles for the Re = 200, s = - 1 open-end flow at r = 0.2,0.4,0.6,0.8 and 1.0: 
(a) radial velocities; (a) azimuthal velocities. Note the uniform radial velocity and zero azimuthal 
velocity of the incoming fluid a t  r = 1. 
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FIGURE 5. Pressure-gradient profiles for the s = - 1 closed-end finite-disk flows at Re = 40, 100 and 
500. The dashed lines correspond to the pressure-gradient profiles of the Branch 4 similarity 
solution. Note the presence of a collision region (non-zero slope as r+O of the pressure coefficient) 
for the Re = 500 finite-disk flow. 

subjected to asymmetric disturbances, are symmetric a t  all values of r .  For Re = 200, 
however, they do not attain similarity form until r = 0.3. 

We now turn to the s = - 1 closed-end results. Figure 5 is a plot of the pressure 
coefficient versus r .  As was the case for the s = - 1 open-end flows, the end effect 
increases noticeably with increasing Reynolds number for low to moderate Reynolds 
numbers. At Re = 40, the similarity solution is valid for 0 < r < 0.8 and at Re = 100 
for 0 < r < 0.5. By Re = 250, however, the two solutions agree only up to r = 0.1. 
This trend continues for the closed-end flows and, for Re 2 400, the effect of the end 
has actually propagated all the way back to the axis of rotation, where a collision 
region appears a t  r = 0. The c.ollision region is manifested by the non-constant 
l/r(dp/dr) as r+O, which indicates that the similarity solution no longer provides 
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FIGURE 6. Velocity profiles for Re = 200, 8 = - 1 closed-end flow: (a) radial velocities at r = 0.2, 
0.8 and 1.0; ( b )  azimuthal velocities at r = 0.2,0.4,0.6,0.8 and 1 .O. The circles correspond to z,, - the 
points about which the radial velocity is antisymmetric and the azimuthal velocity symmetric. 

a valid description of the flow over any portion, no matter how small, of the flow 
domain. The reason for the appearance of the r = 0 collision region at  high Re will 
be discussed below. 

The crosses in figure 2 summarize the s = - 1 closed-end results. As for the open-end 
flows, they represent l/r(dp/dr) evaluated at r = 0.1. For Re < 350, the closed-end 
solutions decay into the symmetric, temporally unstable, similarity solution. This is 
really quite surprising because the r = 1 closed-end boundary condition, though 
symmetric, does not resemble the symmetric, Stewartson-like similarity solution. 
This is apparent from figure 6 (a,  b )  where the closed-end radial and azimuthal velocity 
profiles are plotted for various valuks of r for Re = 200. The points marked with circles 
on the r = 1 profiles correspond to zo - the axial location where the radial velocity 
is zero and about which the radial velocity is antisymmetric and the azimuthal 
velocity symmetric. The discontinuities in the velocity fields at  r = 1, z = 0.5 are 
allowable because, to a first approximation, the flow is inviscid at r = I. 

The Re = 500, closed-end point on figure 2 appears near the Branch 2 and 3 
similarity solution but it does not resemble either of these solutions. Though not of 
similarity form, the Re = 500 closed-end solution is symmetric about the midline at  
all radial locations except near the r = 0 collision region. Over the region 0 < r < 0.5 
its velocity profiles most resemble the Branch 4 similarity solution, but precise 
agreement is never attained. 

Comparing figure 6 (a)  with figure 4 (a) ,  we see a noticeable difference between the 
decay of the two radial velocity profiles into the similarity solution. By r = 0.8, for 
the closed-end solution, the two returning jets of fluid, clearly visible at  r = 1, 
have merged into one. The momentum of the returning radial velocity, therefore, is 
considerably larger at r = 0.8 for the closed-end solution than for the open-end 
solution. For Re 2 400, the radial velocity in the closed-end flows does not decay into 
the similarity solution by r = 0, and a collision region forms at  the axis of rotation. 
A t  high Re, the flow in the core does not have sufficient viscosity to damp the 
returning jet of fluid and so a collision region forms. 

The differences in the details of the flow fields between the s = - 1 similarity 
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FIGURE 7. Dimensionless torque on either disk for the s = - 1 flows. -, similarity solution; 
0, open-end flows; x , closed-end flows. 

solution and the finite-disk solutions do not necessarily imply major differences in 
global quantities. For example, let us consider the total torque exerted by the fluid 
on the top disk, defined as 

Tz = - s,’g(r, l ) r2dr .  
2xpQ L4/ H 

7 =  

Figure 7 shows a plot of the dimensionless torque as a function of Re for the similarity 
solution and the open- and closed-end finite-disk solutions. Because these flows are 
all symmetric, the magnitude of the torque is the same at both disks. As we might 
expect, the torques for the open-end flows are closer to the similarity solution than 
are those of the closed end. At Re = 200, the open-end finite-disk solution agrees with 
the similarity solution only for 0 < r < 0.3, yet the torques are nearly identical. This 
is because the torque only depends on the axial derivative of the azimuthal velocity 
a t  the disk surface; the details of the flow away from the disk are of little importance. 
Even though the s = - 1 open-end flow does not resemble the similarity solution a t  
all axial locations for r > 0.3, the flow in the immediate vicinity of the disks - within 
the boundary layers - is quite close to the similarity solution for all r .  Note that 
the closed-end finite-disk torques fall below those of the similarity solution. For the 
similarity solution, the azimuthal velocity quickly decays to zero away from the 
disks, but for the closed-end finite-disk flows, the azimuthal velocity decays less 
rapidly near the disk and displays a sizeable gradient a t  the midline, as is apparent 
from figure 6 ( b ) .  Thus, owing to  the smaller gradient in azimut,hal velocity near the 
disk surface, the closed-end finite-disk torques are less than those of the similarity 
solution. 

We have seen that, for all the s = - 1 hite-disk open-end flows and for the 
closed-end flows below a Reynolds number of 400, the solution returns to the 
Branch 4 symmetric similarity solution near the axis of rotation. For Re > 119.8, 
however, this similarity solution is temporally unstable. In  our numerical scheme 
when proceeding from one Reynolds number to another, we have applied a purely 
symmetric disturbance to the system. Physically, this corresponds to  increasing the 
magnitude of the rotation rates of both disks by precisely the same amount 
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FIGURE 8. Pressure gradient profiles for the Re = 300, s = - 1 open-end finite-disk flows with zero 
and 0.001 incoming azimuthal velocity. The dashed line corresponds to the Branch 4 similarity 
solution. The non-zero incoming azimuthal velocity results in a collision region, while the zero caae 
is of similarity form near r = 0. The slight discrepancy between the zero incoming azimuthal 
velocity flow and the similarity solutions is less than the accuracy of the computations, i.e. less 
than 2%. 

simultaneously. To consider the effects of asymmetry, disturbances that were 
asymmetric about the midline z = 0.5 were applied a t  the end r = 1 to the symmetric, 
steady, both open- and closed-end flows over a range of Reynolds number. Above 
Re x 140 for the open-end solutions and Re x 120 for the closed-end solutions, the 
introduction of asymmetry into the flow results in a subtle though fundamental 
change in the solution structure: a collision region forms at  r = 0, nullifying the 
similarity solution as a valid description of the flow near the axis of rotation. This 
is apparent by reference to figure 8 where we plot l/r(dp/dr) versus r at Re = 300 
for three different steady solutions : the Branch 4 similarity solution (horizontal 
dashed line) ; the open-end finite-disk solution without the application of an asym- 
metric ‘disturbance ; and the open-end solution with the angular velocity of the 
incoming fluid set to 0.001 rather than zero. This slight deviation from zero for the 
incoming angular velocity represents a small-amplitude asymmetric disturbance to 
the Branch 4 similarity solution; this angular velocity does not correspond to the 
angular velocity of the asymmetric Branch 3 similarity solution, which, at Re = 300, 
has& equal to 0.407. The finite-disk solution without the disturbance is of similarity 
form near the axis of rotation (0 < r < 0.15). The slight discrepancy in this region 
between it and the similarity solution, apparent in figure 8 because of the enlarged 
scale, is less than 2 yo. The solution with the asymmetric disturbance is indistinguish- 
able from that without for 0.5 < r < 0.95 (there is of course a small discrepancy 
near the end r = l) ,  where neither agrees with the similarity solution. A t  r = 0.2, the 
discrepancy in the pressure coefficients between the two finite-disk solutions is still 
only 4%, but, as r+O, where the finite-disk solution without the asymmetric 
disturbance becomes of similarity form, the s = - 1 open-end solution with non-zero 
incoming angular velocity diverges abruptly, forming a collision region at the axis 
of rotation. Thus, it is not of similarity form anywhere in the flow domain. 

It is apparent from our numerical simulations that some type of asymmetry must 
be introduced into the system to cause a collision region to form near the axis of 
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rotation and thus negate the similarity solution as a valid description of the flow 
between finite rotating disks as r+O. I n  any experimental system, some asymmetry 
will always be present and our numerical results suggest that a collision region will 
form. The collision region might be difficult to observe experimentally, however, 
because its actual size is only O ( H / L )  and the velocities, although not zero, are 
nonetheless small. Note that even though asymmetry has been introduced and the 
similarity solution is not valid as r+O, or anywhere else in the flow domain, the 
finite-disk solution does not approach the stable asymmetric similarity solution a t  
these Reynolds numbers. Indeed, there is still a region in r over which the finite-disk 
solution qualitatively resembles the unstable symmetric similarity solution. 

To understand why the s = - 1 finite-disk solution retains Branch 4 similarity form 
when subjected to symmetric disturbances but not when subjected to asymmetric 
disturbances, we consider the linearized temporal stability of the similarity solution. 
A temporal stability analysis of the Branch 4 s = - 1 similarity solution reveals the 
existence of a single positive (growing in time) eigenvalue for Re > 119.8. The 
eigenfunction corresponding to  this unstable eigenvalue has a radial velocity com- 
ponent that is antisymmetric about z = 0.5 and an azimuthal velocity component 
that is symmetric. At any particular Reynolds number the difference between the 
s = - 1 finite-disk end condition and the similarity solution can be expressed in terms 
of the orthonormal eigenfunctions of the Branch 4 similarity solution, i.e. 

N 

u(r  = 1, z ) + g ’ ( z )  = E af lPf l ( z ) ,  
fl-1 

where f ’  and g are the similarity functions, {Pfl, &,} are the eigenfunctions, {afl, d,} 
are the amplitude coefficients and N is the total number of modes. The unstable mode 
is designated by = 1. Recall that f ( z )  is symmetric about z = 0.5 and g(z) 
antisymmetric. If we now consider various end conditions, we conclude that, if 
u(r  = 1,z) is symmetric about z = 0.5 then, because Pl(z) is antisymmetric, the 
amplitude coefficient for the unstable mode a, is identically zero. Similarly, if 
v(r = 1, z) is antisymmetric, then, because Q1(z) is symmetric, d, = 0. Both the s = - 1 
open- and closed-end conditions have u symmetric and v antisymmetric about 
z = 0.5 (cf. figures 4a, b and 6a,  b) in accordance with the asymptotic turning-region 
analysis. Thus, the two end conditions that we have considered, due to their 
symmetries, do not excite the unstable mode. End conditions that lack these 
symmetries will, in general, excite the unstable mode. 

Different types of asymmetric disturbances affect the steady, undisturbed solutions 
in the same qualitative way. For the open-end flows, non-zero incoming angular 
velocity, for Re 2 140, results in the formation of a collision region near the axis of 
rotation, negating the similarity solution as a valid description of the flow anywhere 
in the flow domain. For closed-end flows, positioning the returning jets of fluid 
asymmetrically about z = 0.5 has a similar effect. 

Both of the above disturbances were applied continuously at the end r = 1. 
Instantaneous disturbances were also applied to  the steady solutions. These dis- 
turbances generally involved small-amplitude, mass-conserving perturbations to  the 
radial velocity profile a t  all radial locations. After an initial transient period of 
dimensionless time 30 or 40, in most cases such disturbances did not have as great 
an effect on the flow as did the continuous r = 1 disturbances. It is not entirely clear 
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whether the instantaneous disturbances would ultimately decay completely or would 
persist, invalidating the similarity solution near the axis of rotation. This seems to 
be dependent on the type and amplitude of the instantaneous disturbance, as well 
as the Reynolds number of the flow. 

In  the open-end runs with non-zero incoming angular velocities referred to above, 
the incoming angular velocity deviated only slightly from the zero centreline angular 
velocity of the Branch 4 symmetric similarity solution. When the angular velocity 
of the incoming fluid is set to correspond to the centreline angular velocity of one 
of the asymmetric similarity solutions, however, the finite-disk flow resembles the 
asymmetric similarity solution over a portion of the flow domain. This was observed 
both at Re = 140, where the pressure coefficient for the finite disk and asymmetric 
similarity solution deviate by less than 25 % for 0 < r < 0.5, and at Re = 200, where 
deviation of less than 25 % in pressure coefficient exists for 0 < r < 0.2. This type of 
end condition corresponds to a realizable experimental configuration in which the 
unbounded fluid surrounding the disks is rotated. So, simply by rotating the fluid 
in which the disks are immersed, an experimentalist can affect which similarity 
solution the flow will resemble far removed from the end. This result emphasizes the 
effect of the end condition (and specifically the angular velocity) in determining which 
similarity solution the finite-disk flow resembles. We shall see this phenomenon again 
in the s = 0 flows. 

For both the open- and closed-end s = - 1 flows, we find the solution to be unique 
a t  all values of Reynolds number considered. (The effects of the uncertainty about 
the location of zo are confined to within several grid points of r = 1 and, if the 
returning streams are located such that their positions are asymmetric about z = 0.5 
and a collision region forms at r = 0, to within several grid points of r = 0. The 
solution over the bulk of the domain is, however, essentially unaffected.) This is in 
contrast to the results of Harriott & Brown (1984) who found multiple solutions at 
s = - 1 for flow in a non-deformable cylindrical drop a t  aapect ratios up to three. At 
an aspect ratio of three, however, their asymmetric solutions were not asymmetric 
over the entire flow domian; at Re = 67 (Re here is based solely on the gap width 
H )  the asymmetry was confined to 0.3 < r < 1. At an aspect ratio of one, by contrast, 
the asymmetry extended over the entire flow domain, but nowhere resembled any 
of the asymmetric similarity solutions. These results, interpreted in the light of the 
solution uniqueness we observe, suggest that any solution multiplicity that may be 
observed at intermediate to large aspect ratios will be confined to an O ( H / L )  region 
near r = 1 and possibly, if a collision region develops, to an O ( H / L )  region near r = 0. 
Because we do not resolve the details of the O ( H / L )  region near r = 1, we observe 
solution uniqueness. This also explains why Harriott & Brown found a larger region 
of asymmetry at an aspect ratio of one than at an aspect ratio of three. 

In summary, we have seen that the s = - 1 open-end flows return to the Branch 4 
symmetric similarity solution as r+O for all Reynolds numbers considered. The 
closed-end flows return to the Branch 4 solution for Reynolds number below 400; 
for Re 2 400, a collision region forms at the axis of rotation and the flow does not 
resemble any similarity solution. The application of a continuous asymmetric 
disturbance causes the formation of a collision region at r = 0 for Re > 140 for flows 
with either type of end condition, thus invalidating the similarity solution as r+O. 

3.2. One rotating and one stationary disk: s = 0 
We next consider the case of one disk rotating and the other stationary: s = 0. A 
plot of /3/2Re DS. Re is shown in figure 9; the solid curves again represent the similarity 
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FIQURE 9. Comparison of the s = 0 pressure coefficients at r = 0.1 for similarity and finite-disk 
flows: -, similarity solution; 0, open-end flows; x , closed-end flows. Branch 1 is the Batchelor 
solution and Branch 9 the Stewartson solution. 

solution. Only three of the many existing solution branches are shown; the others 
possess rather aphysical velocity profiles. Branch 1 (again with the numbering scheme 
of Szeto), which extends from 0 to co in Re, is the one-cell Batchelor solution. A t  
high Re, these solutions display significant velocity gradients near both disks. Two 
new one-cell solutions, Branches 8 and 9, appear a t  Re = 216.9. At high Re, 
Branch 8 solutions display non-uniform radial velocity profiles and constant but 
negative angular velocities in the core. Branch 9 solutions are Stewartson solutions. 
A t  high Re, these solutions approach the von Karman free-disk solution; they possess 
an O(Re-4) thick boundary layer of fluid thrown radially outward and a negative, 
O(Re-4) in magnitude, radial velocity in the core. The angular velocity approaches 
zero beyond the O(Re-k) boundary layer, but there is a small overshoot, resulting in 
slightly negative angular velocities in the core. Branch 1 and Branch 8 solutions are 
temporally stable and Branch 9 solutions temporally unstable. 

We now consider the s = 0 finite-disk results. A comparison between the similarity 
solution and the open-end, finite-disk solution is shown in figure 9 where we plot 
l/r(dp/dr) evaluated at r = 0.1, respresented as diamonds. Near the axis of rotation, 
for Re up to about 60, the open-end finite-disk results agree with the Branch 1 
similarity solution (i.e. the two solutions vary by less than 2 %). At Re = 40, the two 
solutions agree for 0 < r < 0.35. At Re = 80, the two solutions do not agree a t  
r = 0.1, as is apparent from figure 9, but they do agree asymptotically as r+O. For 
80 < Re < 250, the effect of the end propagates all the way back to the axis of 
rotation, and there is no longer agreement with any similarity solution. A collision 
region at  r = 0 appears for these flows for Re > 200. Above Re x 250, the open-end 
finite-disk flows take on a Stewartson form, and the solutions resemble the temporally 
unstable Branch 9 similarity solution at moderate values of r .  These finite-disk 
solutions, however, have a collision region at  r = 0, and therefore are not of similarity 
form as r+O. As was the case for the s = - 1 solutions beyond Re = 120 after the 
application of an asymmetric disturbance, we again see that the flow between disks 
of finite extent resembles a temporally unstable similarity solution over part of the 
flow domain but forms a collision region near the axis of rotation. For the s = 0 
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FIGURE 10. Velocity profiles at r = 0.2, 0.6 and 1.0 for the Re = 250, B = 0 open-end flow: 
(a) radial velocities; ( b )  azimuthal velocities. 

open-end flows, however, the r = 1 end condition excites the unstable mode, and the 
application of an additional disturbance is not necessary. 

The resemblance between the s = 0 open-end finite-disk flows and the s = 0 
Branch 9 similarity solution is, for Re 2 250, quite close in the range 0.3 < r < 0.6, 
though again we stress that quantitative agreement is never attained. For example, 
at Re = 500, the pressure coefficient for the finite-disk flow deviates from that for 
the similarity solution by only 7 % at r = 0.5, though it differs by almost 100 yo at  
r = 0.2 and by 30% at r = 0.7. Also, the open-end flows never display negative 
centreline angular velocities, though the Branch 9 similarity solutions do (e.g. for 
Re = 500, g(a) = -0.00275). 

Radial and azimuthal velocity profiles are shown in figure 10 (a,  b) at Re = 250 for 
s = 0 open-end flow ; both are reminiscent of the Branch 9 similarity solution over 
the entire domain. Even the r = 1 end condition - zero angular velocity and uniform 
radial velocity of the incoming fluid - is close to the Branch 9 similarity solution. The 
Stewartson form of this flow is very apparent; the azimuthal velocity quickly decays 
to zero away from the rotating disk and the inward-flowing radial velocity is nearly 
constant. No appreciable gradients in either the radial or azimuthal velocity exist 
near the top disk for any value of r.  We shall see that the situation is much different 
for the closed-end condition. 

The closed-end s = 0 results, represented by crosses, are summarized in figure 9. 
Here again we see agreement with the Branch 1 similarity solutions, for small r ,  up 
until Re x 60. For Re = 40, the two solutions agree for 0 < r < 0.2. At Re = 80, the 
two solutions do not agree at r = 0.1, but, as was the case for the open-end flows, 
they do agree asymptotically as r+O. 

For larger Re, 80 < Re < 150, however, the two solutions do not agree anywhere 
in the flow domain, but no collision region develops at the axis of rotation. In  this 
range, the solutions differ only slightly near the axis of rotation. For example, at 
Re = 100, the pressure coefficients for the two solutions differ by only 8 yo a t  r = 0.02. 
For 200 < Re < loo0 (solutions for Re > 750 are not shown in figure 9), the two 
solutions agree asymptotically for some values of Reynolds number as r + O ,  but differ 
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FIQURE 11.  Radial velocity profiles for Re = 100,8 = 0 for open-end, closed-end and similarity flows 
at r = 0.1. The discrepancies between the three solutions persist as 9-0. 

over the bulk of the flow domain. Again, however, no collision region develops at  the 
axis of rotation. A t  Re = 200, the pressure coefficients for the two solutions agree only 
at the axis of rotation, differ by 4 Yo at r = 0.1 and by 24 Yo a t  r = 0.6. A t  Re = 500, 
the solutions differ by 3 yo at the axis of rotation, by 4 % at r = 0.1 and by 50 yo at 
r = 0.6. Thus, we can state generally that beyond Re = 80, the closed-end s = 0 flows 
resemble the Branch 1 similarity solution over a portion of the domain near r = 0, 
but quantitative agreement, if i t  exists at  all, is limited to an extremely small 
(< 0.04) region near the axis of rotation. Similar behaviour was observed by Dijkstra 
& van Heijst (1983) at an aspect ratio of 14. Their Re = 1000, s = 0 velocity profiles 
resembled, but did not precisely agree with, the Branch 1 similarity solution at the 
lowest non-zero r ( r  = 0.2233) their mesh contained, though the quantitative 
discrepancy at this radial location in, for example, axial velocity is at  most about 
7 % , which may be due to grid resolution. 

We can see the slight discrepancy between the finite-disk results and the Branch 1 
similarity solution at moderate Reynolds number by reference to figure 11 where 
we plot the radial velocity profiles at  r = 0.1 and Re = 100 for the similarity solution 
and the open- and closed-end s = 0 flows. Both the finite-disk solutions are already 
tending towards their high-Re asymptotic behaviour : the closed-end profile displays 
larger gradients near the top disk than either the similarity solution or the open-end 
flow. These differences between the finite-disk results and the similarity solution 
persist as r + 0. 

Figure 12(a,b)  depicts radial and angular velocity profiles for Re = 250, s = 0 
closed-end flow. The Batchelor form of these velocity fields is apparent - significant 
axial gradients exist in both the radial and azimuthal velocities near both disks and 
the core flow possesses a constant but non-zero angular velocity. By r = 0.2, both 
the radial and azimuthal velocity profiles resemble the similarity solution, but they 
do not agree quantitatively. The two solutions do agree asymptotically as r+O. The 
radial velocity profile at r = 1 shown in figure 12 (a) shows the fluid being thrown out 
as a jet by the bottom disk, traversing up the disk enclosure and returning as a jet 
adjacent to the top disk. The end condition for the radial velocity qualitatively 
resembles the Branch 1 similarity solution at high Re. The end condition for the 
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FIQTJRE 12. Velocity profiles for the Re = 250, s = 0 closed-end flow: (a) radial velocities at r = 0.2, 
0.6 and 1.0; ( b )  azimuthal velocities at r = 0.2, 0.4, 0.0, 0.8 and 1.0. 

azimuthal velocity, shown in figure 12 (b), however, does not resemble the similarity 
solution. The angular velocity in the core is 0.7 compared with 0.35 for the 
Branch 1 similarity solution and, above the midline, the angular velocity continually 
increases rather than decreases as it approaches the top disk, with the appearance 
of a boundary layer at the top disk where the no-slip boundary condition is satisfied. 
(This boundary layer is O[{Re(L/H))-t] in thickness, is inside the inviscid turning 
region and, for numerical purposes, we have simply left a discontinuity a t  the first 
axial grid point.) These qualitative and quantitative differences in the azimuthal 
velocity at r = 1 are sufficient to invalidate the similarity solution as a description 
of the flow over the bulk of the domain at high Re. 

In summary, we see that the s = 0 flows return to the Branch 1 similarity solution 
as r + 0 for Re < 80 regardless of the end condition. For 80 < Re < 150, the closed-end 
flows resemble but do not agree with the Branch 1 Batchelor-type solution anywhere 
in the flow domain. At larger Re, 200 < Re < 1000, some of the closed-end flows do 
agree with the Branch 1 similarity solution, but only in a very small region near the 
axis of rotation ( r  < 0.04). The open-end flows resemble no similarity solution for 
80 < Re < 250 but, for Re > 250, they do resemble the Branch 9 Stewartson-type 
one for small but non-zero r .  These solutions vary from the similarity solution near 
the axis of rotation owing to the presence of a collision region at r = 0. Thus, we see 
again the profound influence that the end condition, and in particular the angular 
velocity, has on the flow throughout the entire domain between the two finite disks. 

3.3. Strong counter-rotation: s = -0.8 
We next briefly consider strong counter-rotation, s = -0.8, as it is qualitatively 
similar to exact counter-rotation, s = - 1.  Three of the many similarity solution 
families for s = -0.8 are shown in figure 13. The super-critical bifurcation, which 
occurs for the perfect case of exact counter-rotation, is ruptured; the resulting limit 
point for the Branch 3 and 4 solutions occurs a t  Re = 158. All three similarity 
solutions shown are two-cell solutions. A t  high Reynolds number, the Branch 2 
solution displays a non-constant and negative angular velocity in the core and a 
maximum in radial velocity near the top (slower moving) disk. Branch 3 solutions 
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FIGURE 13. Comparison of the s = -0.8 pressure coefficients at r = 0.1 for similarity and finite-disk 
flows: -, similarity solution; 0, open-end flows; x , closed-end flows. Branch 4 is the Stewartson 
solution. 

are just the opposite, with a positive angular velocity in the core and a maximum 
in radial velocity near the bottom disk. Branch 4 solutions are agin of Stewartson- 
type; they are characterized by zero-angular-velocity cores and a maximum in 
radial velocity near the bottom disk. Branch 2 and 3 solutions are temporally stable, 
Branch 4 solutions unstable. 

The finite-disk solutions are summarized in figure 13. Again, the diamonds 
represent l/r(dp/dr) evaluated a t  r = 0.1 for the open-end solutions. At  low to 
moderate Re (0 < Re < loo), the open-end flows agree with the Branch 2 similarity 
solution over a large portion of the flow domain. At Re = 40, the two solutions agree 
for 0 < r < 0.85, and at  Re = 100 they agree for 0 < r < 0.5. For Re > 120, the 
open-end finite-disk solutions do not follow the Branch 2 similarity solution; instead, 
they tend toward the Branch 4 solution. A t  high Reynolds number (200 < Re < 500), 
however, the open-end flows do not appear to resemble any similarity solution at  
r = 0.1. This is in contrast to the s = - 1 open-end flows, which, a t  r = 0.1 and in 
the absence of an asymmetric disturbance, coincide precisely with the Branch 4 
similarity solution at all Re considered. 

The s = -0.8 open-end flows do, at high Re, resemble the Branch 4 similarity 
solution over a portion of the flow domain. If we plot l/r(dp/dr) evaluated a t  r = 0.3 
(not shown), for example, the open-end points fall much closer to the Branch 4 curve 
at high Re. At r = 0.3 the pressure coefficient differs by only 17 % at Re = 300 and 
by 11 yo at Re = 500 from the Branch 4 similarity solution. Near the axis of rotation, 
however, the solution deviates markedly from this Stewartson-type similarity 
solution, as was the case for s = - 1. 

A more careful look at  the s = -0.8 open-end solutions at  high Reynolds number 
reveals that the flow is actually described by two different similarity solutions in two 
different regions of the flow domain. Near r = 1, the effect of the end is important 
and the solution does not resemble any similarity solution. In an intermediate region 
(0.2 < r < 0.4) the finite-disk open-end flow resembles the Branch 4 similarity 
solution, as shown in figure 14(a), where we plot the radial velocity a t  r = 0.3 for 
the open-end finite-disk flow and the Branch 4 similarity solution. The symmetry of 
the finite-disk flow is apparent. This similarity solution is, however, temporally 
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FIGURE 14. Comparison of Re = 300,8 = -0.8 radial velocity profiles for open-end and similarity 
flows: (a) Branch 4 similarity solution and finite-disk solution at r = 0.3; ( b )  Branch 2 similarity 
solution, Branch 2 similarity solution plus small perturbation term, and finite disk open end solution 
at r = 0.04. 

unstable. For s = - 1, a collision region develops at r = 0 after the application of an 
asymmetric disturbance. For s = -0.8, a collision region develops as well, but a more 
fundamental change in the solution occurs - the Branch 2 similarity solution, plus 
a correction term associated with the Branch 2 solution, describe the flow near the 
axis of rotation, 0.02 < r < 0.1. 

This correction term is determined by a small perturbation analysis of the 
similarity solution, where solutions to the boundary-layer-like equations (4) of the 
form 

(134  
00 

u = - f r f ( z ) -  X k , @ * b i ( z ) ,  
12-1 

2, = rg(z) + c 1, r"* c,(z) ,  
A - i  

etc. were sought. Here {A,} and {b,, c,} are eigenvalues and corresponding eigen- 
functions and {k, ,  I , }  are amplitude coefficients. Such an analysis was performed by 
Durlofsky & Brady (1984) in their study of the similarity solutions describing flow 
in an infinite channel or tube with either porous walls or an accelerating surface 
velocity, as well as by Chen & Libby (1968) in their analysis of the Falkner-Skan 
equation for the boundary-layer flow over a wedge. The results of the analysis of 
Durlofsky & Brady were found to be useful in explaining discrepancies between the 
similarity solution and its finite-domain counterpart. Here too the small perturbation 
analysis is able to resolve the difference between the s = -0.8 finite-disk solution and 
the Branch 2 similarity solution. The s = -0.8, open-end solution at, for example, 
Re = 300, does not appear to resemble the Branch 2 similarity solution near the axis 
of rotation (cf. figure 13). However, the inclusion of the first eigenfunction, for which, 
at  Re = 300, h = 1.67, with an amplitude of - 1, resolves this difference and 
demonstrates that the Branch 2 similarity solution, along with its smell perturbation 
term, does indeed describe the flow between finite disks near the axis of rotation. This 
is apparent from figure 14(b) which shows the open-end finite-disk radial velocity 
profile at  r = 0.04 as well as the Branch 2 similarity solution radial velocity both with 
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and without its small perturbation term. The need for the inclusion of the small 
perturbation term is apparent, as is the asymmetry which has developed between 
r = 0.3 and 0.04. Thus, near the axis of rotation, the open-end finite-disk flow is 
described by a non-Stewartson-type similarity solution, but elsewhere i t  is of 
Stewartson form. 

For the flows described by the Branch 2 similarity solution and its small 
perturbation term, the collision region a t  the origin results from our extrapolation 
procedure. Because the amplitude coefficient associated with the small perturbation 
term is 0(1), we are linearly extrapolating a function that is not linear near r = 0 
(recall that A = 1.67) and this results in the appearance of a collision region. We note 
that an O( 1 )  amplitude coefficient is not inconsistent with the small perturbation 
analysis provided r is small and A > 1 , as is the case here. For further details on the 
small perturbation analysis, see Durlofsky (1986). 

No other s = -0.8 open-end velocity profiles are shown; they are quite similar in 
form to the s = - 1 open-end velocity profiles (figure 4a,b) .  

The closed-end finite-disk solutions are represented in figure 13 by the crosses. 
Qualitatively, they are similar to  the open-end results. Near the axis of rotation, the 
closed-end flows resemble the Branch 2 similarity solution for Re < 120. At Re = 40, 
the two solutions agree for 0 < T < 0.08 and at Re = 100 for 0 < r < 0.15. Beyond 
Re x 120, the flows are not described by any similarity solution near the axis of 
rotation. Our numerical procedure failed to reach a steady state for Re 2 300. The 
unsteadiness occurred primarily near the outer edge. The solution was steady, 
however, for r < 0.6, so we present the l / r ( d p / d r )  results for Re 2 300. 

As was the case for the s = -0.8 open-end flows, the closed-end flows do resemble 
the Branch 4 similarity solutions at high Re over a portion of the flow domain, but 
deviate near r = 0. The solution as r+O does not, in this case, agree with another 
similarity solution, as i t  did for the open-end flows. For the closed-end solutions, a 
collision region forms at r = 0, much like that which forms for the s = - 1 closed-end 
flows (which were not subjected to an asymmetric disturbance) for Re 2 400. For 
s = -0.8, however, this collision region appears a t  Re x 200. The s = -0.8 closed-end 
velocity profiles appear somewhat like their s = - 1 counterparts. They resemble the 
Branch 4 Stewartson solution over a portion of the domain even at  high Reynolds 
number, where agreement is not attained anywhere in the flow domain. This 
resemblance is apparent from the near zero angular velocities in the core for r < 0.6 
as well as by the form of the radial velocity profiles over this same region. 

3.4. Comparison of numerical results with experiment 
Our intent, until now, has been to determine the validity of the similarity solution 
in describing flow between large but finite rotating disks. Our analysis of the flow 
is for arbitrarily large disks; thus, it is not assured that our results should describe 
the flow between finite disks of a given aspect ratio. We shall, in any event, compare 
our numerical results with experimental results reported in the literature. This 
comparison will be both quantitative, and when quantitative results are not 
available, qualitative. 

We first make quantitative comparisons with some of the experimental data 
presented by Dijkstra & van Heijst (1983) for a closed-end system a t  an aspect ratio 
of 14. Figure 15 shows a comparison of experiment with our numerical results for 
azimuthal velocities, at two values of r ,  for Re = 1000, s = 0. The solid circles 
represent a summary of the experimental data, the curves are our numerical results. 
The experimental data were not taken at one specific value of T but rather over a 
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van Heijst (1983) (0) for azimuthal velocity at Re = 1O00,s = 0, closed end: (a) 0.84 < r < 0.87; 
(b)  0.36 Q r < 0.45. The experimental data were not taken at an exact value of r but over a small 
range. 
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FIQURE 16. Comparison of numerical results (-) with the experimental results of Dijkstra & 
van Heijst (1983) (0 )  for radial velocity at Re = 100, 8 = -0.3, closed end: (a) 0.74 d r < 0.78; 
( 6 )  r = 0.41. The reversal of the direction of the radial velocity near the top disk is due to a stag- 
nation point at r = 0.70. 

small interval of r .  The two curves are our numerical results at the interval 
boundaries; thus, the experimental data should fall between them. The agreement 
between experimentally measured azimuthal velocities and our numerical results is 
quite good, both at large (0.84 f r f 0.87) and at intermediate (0.36 < r f 0.45) 
radii. The agreement at large radius is a bit surprising because, for the experimental 
configuration used by Dijkstra & van Heijst, H / L  = 0.07. Thus, even at a distance 
of only 2(H/L)  away from the end, our asymptotic results agree with experiments 
performed at an aspect ratio of 14. In  figure 16, a comparison of experimentally 
determined radial velocities with our numerical results is shown for Re = 100, 
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s = -0.3. Again the agreement is good. Note the change in sign of the radial velocity 
near the top disk between r = 0.74 and 0.41, indicating the existence of a stagnation 
point. 

Dijkstra & van Heijst qualitatively observed Stewartson-type velocity profiles for 
strong counter-rotation at high Reynolds number (Re 2 500). Specifically, they 
reported that for s = -0.6, Re = 1000 and s = -4.5, Re = 500 the angular velocity 
virtually vanished outside the disk boundary layers for 0 < r < 0.6. Such behaviour 
was also noted for s = -0.8, Re 2 500. However, at  s = -0.15, Re = 500, Dijkstra 
& van Heijst observed a definite angular motion in the core fluid. 

These observations are completely consistent with our numerical results. For 
strong counter-rotation a t  high Reynolds number, we find that the finite-disk 
closed-end flows resemble the Branch 4 similarity solution over a portion of the flow 
domain. Even in parameter ranges where the finite-disk flow is not described precisely 
by the similarity solution over any part of the flow domain (e.g. s = - 1 ,  Re = 500, 
closed end and s = -0.8, Re > 120, closed end), it tends to resemble the Stewartson- 
type (Branch 4) similarity solution over a portion of the domain. The structure of 
the similarity solution does not change over the region of s: - 1 < s < -f. In this 
range of s, the solution, which extends from 0 to 00 in Reynolds number, is the 
Branch 2 similarity solution, and Branches 3 and 4 appear at  higher values of Re, as 
illustrated for s = -0.8 in figure 13. This explains the resemblance in behaviour 
observed by Dijkstra & van Heijst at  high Reynolds number for s = -0.8, -0.6 and 

For s = -0.15, however, the structure of the similarity solution is quite different. 
Now, Branch 8 extends from Re = 0 to 00 and other branches appear a t  higher Re. 
The structure of the similarity solution for s = -0.15 is analogous to that for 
s = -0.25, which is considered in detail in Durlofsky (1986). For these flows, the 
Branch 8 similarity solution is seen to be the similarity solution applicable to the flow 
between finite disks, and this solution does in fact display a bulk angular velocity, 
as observed by Dijkstra & van Heijst. Thus, the observations of Dijkstra & van Heijst 
are consistent with the finite-disk numerical results. 

Picha & Eckert (1958) conducted experiments for both shrouded and unshrouded 
disk configurations. The largest aspect ratio they considered was nine, and the 
smallest Reynolds number considered, at this aspect ratio, was approximately 3200. 
Because our numerical results have not been extended beyond 1O00, quantitative 
comparison is impossible. Qualitatively, Picha & Eckert observed zero core angular 
velocity for both shrouded and unshrouded disks when the disks were counter- 
rotated. This is consistent with our results, a t  least for - 1 < s < -0.25. They also 
observed, for unshrouded disks, zero core angular velocity when one disk was rotated 
and the other was stationary, but a definite bulk angular velocity when the disks were 
enclosed. This too is in agreement with our findings. 

Dijkstra & van Heijst also conducted some experiments to assess the effect of 
rotating versus not rotating the sidewall. Their results show that the rotation of the 
housing has virtually no effect on the location of the stagnation point and, for 
0 < r < 0.7, little effect on the angular velocity a t  z = 0.5 for 6 = 0. This is in 
agreement with our inviscid analysis of the end region. 

-0.45. 

4. Conclusions 
The results of previous sections lead to many important conclusions concerning the 

flow between finite rotating disks. Of primary importance is the observation that the 
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end effect increased with increasing Reynolds number. The effect of the end was 
apparent as a deviation between the similarity solution and finite-disk flows. Because 
our analysis is valid for disks of arbitrarily large but finite radii, this result indicates 
that, regardless of the size of the disks, the effect of the end is not confined to a region 
near the end. Indeed, in most cases considered, for Re 2 200, quantitative agreement 
between the similarity solution and the finite-disk solution, if it existed at all, was 
over only a fraction of the flow domain, typically not beyond r x 0.2. In many cases, 
however, there was qualitative resemblance between the two over a larger region, 
perhaps up to r z 0.6. These results indicate that, for moderate- to high-Reynolds- 
number flows, the similarity solution may be useful as an approximation to the actual 
flow over the inner portion of the flow domain, say from r = 0 to 0.5, but not as a 
quantitative description of the flow except possibly in the immediate vicinity of the 
axis of rotation. A t  restricted values of axial position z,  say within a boundary layer 
adjacent to a spinning disk, the similarity solution may give an accurate description 
of the flow, even though there is not agreement for all z. 

Our results also show the importance of the type of end condition in determining 
the form of the flow throughout the domain between finite rotating disks. This was 
most apparent for the s = 0 flows where, at  high Re (Re 2 250), the end condition 
determined which similarity solution the flow resembled. The open-end flows, with 
incoming fluid of zero angular velocity and uniform radial velocity resembled the 
Stewartson solution, while the closed-end flows resembled the Batchelor solution. 
The importance of the angular velocity of the incoming fluid was also seen for s = - 1 
flows. When the angular velocity of the incoming fluid was set to correspond with 
the angular velocity of one of the asymmetric similarity solutions, the s = - 1 
finite-disk flow resembled the asymmetric similarity solution over a portion of the 
flow domain. As shown in Durlofsky (1986), the formation of a stagnation point in 
the s = -0.25 flows, as well as the structure of the flow throughout most of the 
domain, is also caused by the angular velocity of the returning fluid. Because of the 
relatively high-angular-velocity fluid in the vicinity of the slower moving top disk 
near the end r = 1, the closed-end flows formed stagnation points. The open-end 
flows, by contrast, did not because the incoming fluid near the top disk was of zero 
angular velocity. 

In many of the finite-disk flows, collision regions formed a t  the axis of rotation. 
This occurred for s = - 1 closed-end flows for Re 2 400; for s = - 1 flows with either 
end condition for Re 2 140 after the introduction of an asymmetry; for s = 0 
open-end flows for Re 3 250; and for s = -0.8 closed-end flows for Re 3 200. A 
collision region also formed for s = - 0.8 open-end flows at high Re, but was attributed 
to our extrapolation procedure. 

A collision region may form at the axis of rotation for one of two reasons. The flow 
may simply lack sufficient viscosity at high Re to damp the effect of the end. If the 
disturbance caused by the end does not decay as r+O, a collision region will form. 
This is the mechanism for collision-region formation for the s = - 1 closed-end flows 
for Re 2 400 and for the s = -0.8 closed-end flows for Re 3 200. This effect was also 
observed by Brady (1984) and Brady & Acrivos (1982) in their studies of the flow 
in a channel or tube with either a uniformly porous surface or an accelerating surface. 
When a collision region forms by this mechanism, the finite-domain flow does not 
approach similarity form at intermediate values of r ,  though its velocity profiles may 
resemble qualitatively those of the similarity flow. 

The other manner in which a collision region may form is more subtle. It occurs 
when the finite-disk solution approaches a temporally unstable similarity solution at 
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intermediate values of r.  This may occur when the end condition resembles the 
temporally unstable similarity solution. Once the finite disk solution is ' sufficiently 
close' to the unstable similarity solution, which generally occurs for 0.2 6 r < 0.4, the 
instability manifests itself, giving rise to an abrupt deviation from similarity form 
and to the formation of a collision region. This will only occur, however, if the 
finite-disk flow possesses a component of the unstable mode. For the s = 0 open-end 
flows a t  Re 2 250, the end condition apparently did excite the unstable mode. For 
the s = - 1 flows, however, the end condition did not introduce any destabilizing 
disturbance. Upon directly applying a disturbance that was asymmetric about the 
midline, the unstable mode was excited and a collision region formed. The feature 
that distinguishes flows which form collision regions by this mechanism is their strong 
resemblance to the unstable similarity solution at  intermediate values of r .  Flows that 
form collision regions by the other mechanism never attain this degree of resemblance. 
In neither case, however, does the similarity solution provide a valid description of 
the flow anywhere in the domain between the finite rotating disks. 

From the above discussion, it is apparent that temporally unstable similarity 
solutions are relevant to the description of the steady flow between finite rotating 
disks. This result in itself is significant because one probably would not expect 
correspondence between an unstable similarity solution and a steady finite-domain 
flow. Though they do not quantitatively describe finite-domain flows, unstable 
similarity flows represent, in some cases (e.g. s = - 1 and -0.8, either end condition; 
s = 0, open end), the best similarity approximation to the flow over some region 
between finite rotating disks. 

The s = -0.8 open-end finite-disk flows, for Re 2 200, were seen to resemble two 
different similarity solutions over two different regions of the flow domain. A t  
intermediate values of r ,  these flows resembled the unstable Branch 4 Stewartson 
solution, but nearer the axis of rotation they deviated from this form and resembled 
the Branch 2 similarity solution plus a small perturbation term associated with the 
Branch 2 solution. These flows were the only flows we found to exhibit such 
behaviour. We performed small perturbation analyses for the relevant similarity 
solutions a t  all values of s considered and attempted to resolve collision regions in 
terms of a similarity solution plus its small perturbation term. Only for the s = -0.8 
open-end flow could we interpret the finite-disk collision region in this way. All other 
collision regions appear to vary more fundamentally from similarity form. 

Though our intent in this study was to determine the validity of the von Karman 
similarity solution in describing the flow between finite rotating disks, the procedure 
described in $ 2  may be relevant to many other problems. Our analysis of the end 
region could be generalized and applied to other large-aspect-ratio problems, 
eliminating the difficult numerical problem of resolving the details of the flow in a 
turning region. Within the context of rotating disk flows, several straightforward 
extensions of our work are feasible. Problems involving suction or injection at  one 
or both disks or net throughflows could be handled with only minor changes to the 
formulation presented in $2 .  Also, using our calculated flow fields, the concentration 
and temperature fields in a fluid between rotating disks, which are of particular 
importance in many problems (e.g crystal growth), can be readily computed. 
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